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FREFACE

This report was criginally submitted as a thesis to the Faculty of tae Gradu-
ate School of The University of Texas in fulfillment of a requiremsnt for the
degree of Muster of Science in Electrical Engineering,

Since interest in the cavity resonator was occasioned by and the results of
the work are pertinent to the Office of Naval Research Contract Nonr 375(01),
it was felt that it should be submitted as a technical report under this contract,

Although it would be desirable for the sake of completeness to extend the
calculations to larger eccentricities, the main interest in elliptical cavities
lies in uiie small eccentricity region., In this region fall the eccentricities
asgociated with unavoidable deformations of cylindrical cavities, The extreme
tedium of the calculations dictates the use of appraximitions in the calculations,
The particular ones developed in this thesis are sufficiently accurate for eccen-

tricities less than 0,4 and are subject to small errors for eccentricities between

O.4 and 0,5,




A v

ABSTRACT

Formilae :|.ce Gerivad for tue nuality facter and rosonant wave length of an
elﬁptical resdnant cavity sperating in the TE,j; mode, Cslculsticne are made
and curves pleifted for their variation with change in eccentricity for values of

eccentricity 17388 than 0.5, The neccesary integrations are numerical using sime
paifying aasunq‘;»tions.

For botk 1; e even and oud modes, tna quality factor increas'ed slightly as -
the eccmtric'};ti;;? was increassd from zaro to a small value, A further increase
in the eccentr'ii.city cavses the quality factor for tae even mode to decrease, The
range of °¢°m’:fit‘i°ity (0 to C.5) used Was not sufficient to show the anticipated
decrease for th‘ odd modn, The eccentricity range considered was limit od by the
approximstions vad In the mettxc;d of evaluation. The approximations were con-
sidered as fully sustified for eccentricities 1sss than O.i. and subject to some

error for eccentt™ sities between 0.4 and 0,5,

i



CHAPTER I
INTRODUCT ION

The purpose of this thesis is to investigate the
effect of mmall amounts of elliptical deformation on the
behavier of certain characteristics of a resonant
electromagnetio circular cylindrical cavity, Although the
circular cylindrical resonant cavity -8 a special case of
the elliptic cylindrical resonant cavity, the elliptical
cavity salution cannot be expressed in terms of the
67lindrical functions, The Bessel functions used for the
oylindrical case are relatively simple and mmerous
tabulations are available. The Mathisn functions required
for the elliptical case are, however, much nore complax and
very few tabular values have been published. The rezonant
wavelength and quality factor in the elliptic cylinder
considered as a deformed circular cylindar warrant
invesvigation bscause a physical cylinder may depart from
perfectly ciroular to an extent detcrmined by the uunufacturing
tolerance; external forces sush as mounting brackets could
also oguse departure from circular. It seems unlikely that
the elliptical aylinder cavity would exhibit such decidsd
speriarity over the oircular cavity as to justify the considerabls
additional mamfacturing difficulties attendant to its use.
The caloulations for the mode considered here show no advantages

poculiaxr to the elliptical modss,




Calculstions were mads in 1946 by Kinser and Wilsen
to determine the variztion of wavelength in certain modes
with the elliptioity of the cylinder, Kinzer and Wilson also
deived an expression for the quality fastor far one value
of eccentricity far the Txou mods; this thesis will consider
tho'mul mods with several values of ecceirtricity for both

odd and even excitation,

1 4, P, Kinser and I, G, Uilson, "Same Results on Cylindrical
Resouatars, ® n.nmmuumm,mzs.mm.pm
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CHAPTER II

ELLIPTICAL COORDILATES AND ELLIPTICAL WAVE FUNCTIONS

(1) The El1liptical Cylinder

The dimensions of ths ocross section of an elliptical
qy‘lindnrmahminl"m:el.mmnicshandaz are
the major and minor axes respectively; the focal distance is 2q,
The perimeter of the ellipse, s, will be kept constant vhen the
ecsentricity is varied, and the parameter used will be the "average
dismeter,® D, whisch is redated to the perimeter by the formulas

perineter 8
D = == s
It 1s evident $hat for the ciroular ease, D is the dianeter of
the undistorted cirele.

The eccentricity, @ , is dofined as the ratio of the
seni~focal distance, q, to the semi-major axis, a., The eccentriocity
is not measurshle directly and thare are two other directly rslated
quantities which are often used instead of the esccentricity as a
measure of the departure from a oircle, Ome quantity is the
ellipticity, E, .efineds

B difference between major

& and minor dismsters

major dlamster

a-~b

The elliptincity is related to ths eccentricity by the fortmlas

zmmmmmmmmmwmaonpm;‘n

3
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i

a




8, mnmm’ﬂ’oj

.

FOCUS FOCUS

n
o

e e e o

FIGURE |

FIGURE 2

» 1R IR M N - 00 5 27 ANl il T 0o IR0 ol R A Ty s s



(3)

(h)

(s)

(6)

E =1-V1-¢°

The other quantity which nay be used to expruss the
departure from circular is N, defined as the ratio of the
minor to the major axis.

N = b/a u\ll---e2 , or, after an elementary
hyperbolic trigonometric identity substitution,

N a tanh (arc sech @)
The relations (3) and (L) are plotted in Pigwre 3.

Carves for the variation in wavelength and in the
quality factor are plotted against the eccentricity, but values
of either E or N can be found by using Figure 3 in conjunction
with the curves plotted against the eccentrioity,.

(2) The Elliptical Coordinate System

Ths elliptical coordinste system is shown in Figure 2,
The orthogonal coordinates ¥ ad qlocate a point uniquely.
The elliptical coordinates are relatcd to the x-y coordinates

by the tranaformation equations:

X = q cosh¥cos

y » q ainhtainv;
The equatinn nf ths bound:=v surface of the ellipse is:

cosh} , = constant = 1/ eccentricity

g Ty B Titnmice s SR ¢ kB S et~ b el s e MW .
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Ths eccentrisity, @ , varies between sero and one and the ellipse
degenerates as @ —1, cosht — 1, —+ 0 to a straight line
between the focii, The ellipse degenerates into a circls as € —0,
eesh ¥ -+ o0, § —- o0, The elements of arc length in elliptical
ocylinder cocmdinateamdslmddaz as shown in Figure 33 the

8 direction is into the paper with the element of arc length in
that direction equal to one ds.

If the definition is nmade:
q ® q(eoahzf-ooez?)%
it will follow that

ds, = q (cosh?¥ -coezy)ad} -gld’t

daz s q(coa‘hzr -coazq)idq :qldq

(3) The Wave Equation in Elliptical Coordinates

The two dimensional wave equation in elliptical
coordinates ia:

2 2
£(F £(§ 2 2 2 -

This euation is known as listhisuts equation. When a product
solution is assumed, and the Bernoulli trial method of separstion
is followed, the equations separate to give two ordinary differential




’ oequations:

2

10 3£ b kg oostp) f z 0

(10) _-}3;.*-( K q oosp) f£(y)
2
9 £ (§ 2 2 2

(11) —I(I-’L—(b-qu cosh §) £(f) = O

where b is the separation constant, The solutions of the first u

equation, (10), are often called Makhteu functions, and the
solutions of the second, (1l), are then called associated
liathisu functions. Bgation (10) transforms to (11) under the ]

sbstitution 72 = £1F , and equation (11) transfarms to

(10) under the substitution [ g +i19 , where 1 is VI,
Solntions exist regardless of the value of the syparation constant,
b, but the solutions are periodic only for certain characteristic
values of ths separation constant, Some suthors 3 considsr only
the periodic solutions of Mathieu's equation as Hathieu functions,

but more recently, lathieu functions have been considered as all

R e

solutions of (9) whether ar not the conditions for periodisity
are satisfied, 4 lolechlan 5 has an extensive discussion

of solutions where no restrictions are placed on the separation
Gonstants. In the calculations which are required in this wark, 5
only solutions which are periodic in 9 will satisfy the required

boundary conditions.

Ee To Fhittaker and G. N, Watson, A Courss of Modsrn Analysis,
) Maocwmillan, 1948, p 4OS
LTables Ralating to Mathieu Punctions, The Computation Laboratory
Talted TTonal Duresu of Standards, 1951
5N, W, Meclachlan, Theory and Application of iathisu Functions,
Oxford, 1947
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" (h) Mathieu Functions

R

oS

Mathieu functions arise in stability investigations of

o

various mechandeal systens, the theory of frequency modulation,
loud-gpeaker theory, and in sny elactromagnetie o vibration
problenm whisch must be stated in elliptical coordinates,

S TR

The modern theory of Mathisu functions is credited to
Shittaker and mch of the mwbzequant theoretical development is
eredited to Ince, Struti, and Molachlan, A historicslly camplete E
list of 226 refevences is given i lslachlan, O Becamse both the "
mm@uamtmdmmmmmm
difficult than those for Besmel and legendres fungtions, complste ‘
tables which make pessible the actusl nse of Mathiew funetions 1

in mmerical computatlen have "naggea far bshind these othar functions
and heve only redently become avaflable,

m;mw.::a wave gulde was firot investigated by
Cm 2 in 1938 snd following his woxk, the first mmaerical
? Recently
tha far more scowrate and wrtensive Tables Relsting to Mathiem

Functions have been published.7 Notation fexr Mathieu functions

of coefficients for Mathigcu functions was published,

6'\’ Vo lolashisn, Theory and Application of Kathisu Functions.

a:m-d, 1917
to ia “ﬁmstionl The G 2 tation lebaratary,
m oL
Le J, Cim, "moc‘“mm”* Waves S.n Ell.iptu Metal Pipes," Jourrel
or_fz# 8, vol 9, 1938, p 583
L l’qﬂ&'ﬁeg Le ve @j %R.mmgw
A and Spharoidal Wave Functions, New York, Wilay

ot e A . S A R SEkb s
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(12)

table is repreoduced on pege 12, With the exception of the designation
of the paremeter for the coefficlents, 211 of tho notation used

here sgrees with the notation used in the Tables. Unfortunately

it was imposgible to use the Tables for mmerical ealculations

because in the mode chosen for investigation, the mmmber of

values of the parametar in the desired range was insufficient.

Solntions to equation (10) can be found frox the formlas

[ ]

&pn(o,coa 7) = E B;f :; :;
where Qan(c,eoa n) iz the angular Mathisu function, p signifies
either e (even), or o (odd), n is the order of the function (and
for the meds considered always one), ¢ 1s a parameter which is
defined later 2° and cos f is the argument of the function,
The coefficients for the right hand smmmation are found in Stratton =
or in the Tables. 2 The cosine functions of 7 are used in the
sumation for the even funstions and sine functions are used in ths
sumzation for the odd functions, The seriss (12) is not a Fourlsr
series because the coefficients are nct derived from the Fourier
defining integrals, but accurding to Stratton L they apparantly
satinfy the conditions of convergenoe necessary far term by term
differentiation or integration,

10300 page 17

100, odt. p 78 or p 82, Refer to Tabls for designation used

12106, c¢ib. tabulated for valuss of s, Refer $o Table for relaticn
vetween ¢ and s.

Lioc, oit, p 20
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| ] The enly angular functions which will be ensountered §|
4 =
| ' in the T&_ul made w11l be the angular {unction of the first 3
| J !
| ] kind with solutions of the form:
] -
| {13) (cpo0en) = > Del cos r(zx:-n q:) of peried 27
23 7 391 ? i3 - o0 okl P 29
o
(i) Soy(ayc0 7) = % }hé'k\bl gin %*&%‘L}?} of pariod 2

The carresponiing radial solutions may be ecalculated from
& joiming facter, but in prastice; the useful sxpres=ion which

convergss mich mors rapidly than the trigonocmetric one is expressed

as a =un of Besael functionsa:

7

i ™8

1~ 5
(25) Je (eya08n T ) (=1)" Dajy 5 % siey (Cscolh ¥ )

14

(26) Jo, (0,c08h F ) "2 tann} é (-1)“(&)9032'“1 %&d (oy006h [ )

whanre g’m " i3 the Bessel function of the firzt kind and
a1

order m.“‘

H‘Tables HRelating to Mathieu Punstions, The Computetion Laboratory,
Tnifed Statas Durean of andards, 1951, p XX
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E The oniy anguliar functions which will be encountered 3
! ' intheTEul reds will be the angular function of the first jl
E kind with solutions of the form: 3 !
i - i
: {123 - Z J' e s 3 i 3
{13) Sol(c.cos n) = - Dezm‘l 308 [(Zlm-l) q) of period 277 $
o2
cos ) = 1 Ttoxel)s)
(1) S0, (cyc08 7) = = Dpg oin {2xel)g] of period 277
The sarresponding radial solutions may be calculated from
& Joining factar, but in prastice, the useful expression whish :
convexrges much more rapidly than the trigonametric one is expressed E
as a sun of B&saei functionss *
. oa ﬁ
N o A i
(15) Jo,(cyo08u¥) = VT2 g (-1) Day 4 % o4y (Cscosh T) i
{ Ve (/0 2 : :
(16) do_(eyco8n 1) = \72 tanhfﬁ EINED S % ey (escodn E)
where m ie the Bessel function of the first kind and
order m._lh

mTahles Zeolating te Mathisu Punotions, The Computailion Laboratory,
Tnited Stztes Buresu of andords, 1951, P #X
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TERLE 0F WOTATION AND CONVERSION FACTORS

Hotation Notation Notstion Yatation

Uasd Used in Used 7 Used in 17

Here Stratton Helachlan™

¢? e? Lq
382(93‘-393 7 Se;(c sc0879) cer(r,v,q)_/A
So..(¢;c08 9) Seg;(e scosg)  88_(7,9)/B

Dey, ¥ AT/

r

m ; o
Jir(c,eouht) Jar(c,cashz’) Cer'(E.Q)/AggrﬁfS)
Jo_(c;008hF) Jo_(c,coshE) Ser(f;Q)/Bgor(S}
ber br a, + 2q

§

bor br br 4+ 2q
- loc, ¢it. p xxxviil except for last column
16 1oe. cit.
17 loa, cit.

Nobation
Uzed
T -

02

Sei' (cycos9)
Sell,’(c, cesy)
Fe

Rer(c’eoahg)
Ror(c s00sh§)

br

b
T

18 ¢, €. Tang,"Propagation of Electromagnetic Waves in Hollow lletal
Pipes of Elliptical Cross-Sectiony% 1549, University of Texas Thesis
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CHAPTER III

A SUMMARY OF OTHER WORK ON ELLIPTIC GUIDES ARD CAVITIES

(1) The Remults of Chu ard Tang

The problem of the propagation of electramagnetic waves

in hollow pipes of elliptiec cross section has been

investigated theoretically by Ciu. =0 Chu studied the aix

lowest order waves, With the excepticn of modes in the eyiindrical il

pipe which exhibit circular symuetry (B | and TEy ), when the
sylinder is deformed to en ellipse both even and odd elliptical
modes are generated with their relative magnitude depending on

the polarization of the excifation. Beceuse of this .splitting,
glight defarmation of the cylindrical guids may, unlike deformation

“g

of the rectangular guide, lead to Instability., The caviiy cousidsrsd
in this thesis may be regarded as a very short wave guide shorbed st
the ends so that the generation of two modes does not lead to
instability, but, rather, te a broadening of the frequency response
of thz cavily due to the splitting.

Chm's article covered the theory of slliptlcal wave guides
but omitted mich of the mmerical calewlations which were used in
obtaining his resuits. Thess mmerical calculations wers reworksd in
deteil by Tang ° 1in 1949, Both Tang and Chm obtained curves for the

19 1, J. O, "Elsctromagnetic Waves in Hollow Elliptis Pipes of
Metal,” Jowrnal of Applied Physics, vel 9, September, 1938

20 ¢, C, Tan; YProouReTIR Y EIECTIMragnetic Waves in Hollow Metal
Pipes of Zlliptieal Cross-Ssction,” 1949, Univérsily of Texas Thesis




(17)

(18)

variation in the cutoff wavelength as a function of the

eccentricity for s guids of constant periphery. The curves

obtained by Clm are reproduced by Sarbachar and Edson ot

22

and
by loreno, Both Tang and Clm obtained curves plotted agsinst

eccentricity far roots of the equations:

o

Jo (rey;) = required fa' even TM modes

Jo(ron) 2 0 required for odd TH moces

J (r;n) s 0 required for even TE modes
3 (r:,u)

1]
o

required for odd TE modss

Unfortunately, the accuracy required in the mumerical work
of Tang and Cim 18 not sufficient for the calculations of ths
resonant wavelength and quality factor of a cavity,

(2) Eipggr and Wilson Results on Cylindrical Cavities 2

Kinger and Wilson determined the root valmes of the
appliceble equations (17) or (18) correct to five significant
figures for nine modes in the elliptic cylinders the even TBOln'
thoﬂongndoddmnn,thoovenmdodthzzn,thomuﬂodd
Tl32n, tle even m01n, and the even 'rsn_n. Tha first subscript
indicates the mmber of variations in the angular direction, the
second subsoript indicates the variations in the radial direction,
For s resonant cavity the third subscript indicates the variations

in the axial direction, but this does not affect the valune of ths seres,

21 g, I, Serbacher and ¥, A, Edson, Hyper and Ultrshigh Prequensy

22 » ave Tranmission Desism Dats, leGraw-Hill, 1948

23 ;. P. Kirger and I, G, Wilson, "Some Results on Cylindrical
Resonstors,” Bell System Techrdcal Jourmal, vol 26, 1947, p 410
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Kinser and @ilson determined an empirical equation for
the ratio of ths perimeter to the cutoff wavelength for three

modes (thomnTEOln, themn'ntnn, andoddnL‘un) a8 a
function of the ellipticity, B.

Xinzer and Wilsen derived an expression for Q for one
mode and one value of eccentricity (even TEj1n With an eocentricity 1
of 0.481k). The circular symwetry of the TEy
necessary to obtain the qualily fastor simpler than those necessary

to find Q for the TE,,q modo. Their article does not give any

maloss the calculations

details of the methods used to make calculations, but the sparse '
outline of method of caloulations indicates that the procedure |
was the same as that used in this work, with the exception of a
different formila for mmerical integration, 2 Since their

only result for Q is one point on a curve for a different mode than
those considered in this thesis, no mmerical cormparison can be F '

nade of results,
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CIAPTRR IV
DETERVDIWTION OF THE RESOMAIT WAVELENGTH

(1) Pield equations for the elliptical cylinder cavity

The equations for the camponents in an elliptical pipe
25 26
in the mil mode aret

(29) Hz = B &:l(c,coay) Jpl(c,coahi) ei( e kB’)
E =0

1x

(20) Hy = -'::‘37- 2 B2 (q) By (1) STV
4 K
ik '

(21) H, = %Ln = -3——15-8p1(7)~b1(t)oi(“‘t'k3')
9 K

y 27

vwhere k3 is the propagation constant, B is a complex azplitude
constant which depends un the relative even and odd modas axcited, w
is.the angular frequenoy, m is the permeability of the dielectric

in the guide, and the primes denote either ur.%_.
: 4|

The boundary conditions require thut B( io) = 0 where
E, is the boundary, This irplies that

U )
0 amd with the definition rpy; = qfi +wiee

0

(22) J;; (c,coahfo)

L

25 g (transverse electris) is often written as H (since only non-zare
’ component in the s direction is Hg)

26 J, A, Strattonm, %n_\%ﬂ, MeQraw-I411, 1941, p 375
27 x,, the propagatIon » olton ¥rittend
28 In al) the ¢ work, the subscripts and prines are emitted

from the r designation for root since the only roots which occur
will be either r! _or r!
ell On 16
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(23)

(24)

. (25)

(26)

(27)

(28)

(29)

Combining the waves that travel in the positive s direction

with those which travel in the negative s direction and making
the indicated trigonometric substitutions, the field equations
forthe% mode in the resonant elliptical cylinder are
obtained, The time function el® 1s suppressed and the equations

aret

H -8 ki Spl(c,ooeq) Jpl(c,ooahf) si.n(k33)

-1 Bk

%

-1 Bk ,
H'l B i Spl(c,coe7) Jpl(c,coehi) cos(k33)

q,

Bk

%

-Bk

9p, (¢,c0s ) J'p;L (c,coshf) cos(kyz)

3p,(c,0039) d| (c,008hF) sin (k;3)

Bpi(c.cosv) Jpl(c.ooaht) sin (ky8)

o}
e
"

Y

E =0
4

The radial and angular coefficients are tabulated in Stratton 29
for given values of the parameter, ¢, %

¢ = 2Nq/)s°

% stratton, Morss, Chu, and Hutner, Elliptic Cylinder and Spheroidal
Wave Punctions, Wilay, 1941

30 The parameter ¢ should not be confused with the ¢ often used to designate
the speed of light.
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(30)

(31)

(32)

(33)
(34)
(35)
(36)

The perimcter of an ellipse, s, 31 35 releted to the semi-focal

distance, ¢, and the eccentricity, @, by the formla:

q f" T
e Jo o8-/ dn

—%‘L 2 (@)

where E (@) is the complete elliptic integral tabulated in

33

Pairoce for valuss of arc sin®,

It will be convenient to use the parameter X,/s used by
Tang and Chu, and ¢ may be expressed in terms of that paraneter by
substituting from equation (31) imto (29).

. - T rwr
Ny

(2) Derivation of an expression for resocnant wavelength

The parameter used to express the shape of the cavity will be
R, defined as I/D whare L and D are the length and "average diameter"
respectively of the cgvi’cy. The following definitions are mades

k, the wave muber, k = 2TV/A

k, = rQ/q
2 = &« k";
p = T/2

31 Mie 3 should not be confused with the s used in Tables of lathisu
Funotions which is equal to ¢, nor with the 8 used in XInzer and
#ilson which is the reciprocal of the A /s used here.

32 This £ (@) should not be confused with the E used by Kinzer and
Wilson to denote ellinticity.

3 B. O. Peirce, A Short Table of Integrals, Ginn, 1929, p 121
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RPN T

(37

(38)

(39)

(10)

(h1)

(42)

(k3)

It followe from equations (35) and (22) that

k{ = (r/q)% - wpe

e

and for propagation, x, must be a pure imaginary and w"/u-é
is greater than the quantity (r/q)2 R

k = 1k3 = 1Vw";u€ - (r/q)?
k‘; = wiue - (r/q)°

Atthereaonantﬁ'equmy,kjumoaothat
wi/ue: (r/q)2 and, after solving for A,
ANe = 2Wor
For the “‘J.u mode,
- TV
k3 = WL

Wh-nthisvﬂnerm'kB naetoqmltothavaluoforkjfrm
equation (39), and the equation is solved for A, ths resulting

equation is:

1
A= WX ¢ Glem)

When the value from equation (41) is substituted into equation
(43) and both sides of the equation are divided by D to make

the resulting expression dimensionless, the equation obtained




e 3

h

A -

- ik g

o
[w!]

is:
.
(4 o, JE RPN | S
§ v (pR}c + (l/"‘c/s)" ;
1 The values of thc parametor )sc/s are plotted as a function
| of eccentricity in Chm. 3> It has already been noted thet the

values of A,/s obtained by Chm are not mufficiently accurate to be
used in determining values for the quality factor, but the values

et o

for the resonant wavelength from equeticn (Lli) can be evaluated

very easily; without the use of Mathisu function tables, &£ Chu's

values for )\6‘/3 are used, Figure ki is a plot of ecquation (L) i

using Chu's values. It is noted that these resonant wavelength values

are not sufficiently accurate and do not enter directly into the

values for the quality factm".36 A

If a more precise destermination of the resonant wavelength
13 desired, it is necessary to combine equations (31) and (41) to
obtain the_relation which was used in evaluating the quality factor:

(45) () (X/8) = (W/2) /E(Q)

When the esccentricity is equal to zero, E (@) is ecual to
/2 so that A /s becames the reciprocal of the root. 37 1r votn
sides of equation (L) are mltiplied by D and the substitution is

35 100 eit |

36 It should be observed that the variation in resonant wavelength 3.
does affect Q since it appesrs in the k3 term in the mumerator of l
equation (82}

37 Xinzer refers to his puraueter "s® which 18 the reciprocal of MNc/s g
a8 the "root value adjusted to the eccentricity.” §

i/
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made for zero eccentricity from equation (45), the squation
obtained iss

2
ot ° \Go? ¢ WOF

(16) N

This agrees with the farmula for wavelength for the vircular

resonant cavity given by Hom:onery.”

380.G.ucnt¢m, od., T%otmmw, NTY
Radhtion' Laboratary 8, » ’
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CHAPTER V

DEVERMINATION OF THE QUALITY FACT(R, Q

WS WA TP e pnseom sl B

(1) Darivation of av sxpression for ths quality factor, Q

The ouality factor, Q, of a resenant cavity is ordinarily

s b Tl 3 b s

defined ss the ratio of the product of the angular frequency and _ q
the energy stored to the average power loss. 39 The tctal snergy

Pl 1o drs 0

in the electric and magnetic fields remains eonsta:irt {(neglecting
losses) and the maximm electric energy is equal to the maximm

magnetic energy, It is sufficient to consider either the elecirie
or magnetic stored ensrgy. Sinece ons component of the electric
field is absent in the TEm mode, it is more convanient to

considar the stored electriz energye This can be found by
integrating the BS and E7 componants of energy over this wvolume,

%7) V= raer TR
The storad”electric energy,

/ Basl,

n=2T sgf 2 2 ‘:-.! ‘
(48) U = L-o j jw : [;z.,l + |B¢ ]} dsyds,ds, i

The differentisl element in the s direction, da3, is equal to
dz, and the only function ¢f z which appears in the expressions for

By end B, %0 13 sin (kyz) or sin (wa/L) so the imtegral

3% 5. Remo and J, R. Whimnery, Fields and Waves in iodern Radio,
Wiley, 33}443 P 378
b0 prstions (25) and (26)
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(51)

2y

with respect to & ist

[* in?
| sin® (7we/IL) dz = L2

This reduces the expression for stored elsctric snergy to the
double imtegral:

=g
Ue =;7mf ° L: {:&Eﬂ 4 iEsai],daz’-‘"*‘l

Substituting from equations (8) and equations (25) and (27):

3 [I:ai[f:{o I.eB,«k ([gpl(,,)] EX8D) )ﬁ
2 fuf, LeB ) Mo 4%
+/1‘7=° ";(an - ﬂk{{ sp,(1)]° (061 2 i

The radial and angular functions are entire functions of
§ &nd 7 respectively, and each double integral may be writien
as the product of two single integrals, It is noted from
equation (8) that ds, is equal to qldy and da, is equael
to 4, df o Vhen these subatitutions are mads and the terms
independent of the varisbles of integration are remeved, ths

Aicaan




I
t
N ' ?
|
|

expression for the stored ensrgy can bs written:

1, B2 =2 fof n
{52) Ug @ Bh’“ka ,[é,g [Spl(q)_lzdd;no[«él(fﬂ‘df

f= go[.bl(gﬂz at

The follswing abbreviations fur integrals will be adopteds

(53) P = f:“iwl(qud7
g2 2
fm [s"l(?)} dq

Emgy 2
jw [%,(F)]° ax

()

Bl
"

(55) Ip

Is
\ (56) m oo [ ar

¥

1]

-% These imtegrals cammot be evaluated anslytically and the evaluations
_must be mads by a cambination of integration of seriss and mmerical

nethods, The astual cvahxatién of the integrals is discussed in
Caspter VI,

The expression for the stored slectric enerzy is written
using these abbraviations as:

L Bz,b:kz

1 #

.’ -G Vg = —— [w0p + »m]




E

D SR

(58)

(60)

(61)

The power loss in the resonant oylinder is due to the
copper losses from the eurrents flowing in the side wall and in

the end plates. The average powsr lass ist

7 £ 4.0 \
anrfgen 2 R’)

where Rs is the surface resistivity as defined in Ramo and
Whinnery. 0 In the side wall the § camponent of current is
sero, simss, by equation (2)),

Hy(§e) = 0
The other two components of current present in the side wall are
evaluated with ¥ = ¥, and when squared are: 12

A T A L
a 2 S
Hp® = -]-3—-5—-- [391(7 ﬂz [@, (5,3 " cosz(k3s)

i
These values must be integrated over the side wall which requires
integratien from 2 = 0 to 2 = I, and from 1= 0 to nm 20,

The value of the integral in equation (49) is the same for an

integrand of either the sine or cosine function squared so that

the integration over the g range of either of equations (60) er (61)

yields I/2 . |
The ir!begralofﬂ’mrtho sids wall may now be writtens

3* kl]tgi’lwfl 2w
212 o y 2
Jiniglwm 2 jO [%107))" 4,
52 1oe. eit. p 209

2 prom sqmations (23) and (23)

’ & 2 Gl ooy e i s Sl e . . ; G i e a "

e Tl e T o A R e e W o S S e B B e 0 e i S e 1 B
2 S i R ol e ol SRR e s : - i i i o 4l i e S S R {) o B
A o - ¢ 5 a - o = i
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(63)

(L)
!

(65)

(66)

(67)

(68)

(69)

TN ooy

H-

The integrand is muitiplied and divided by q., and the substitutions
from equatlons (7) and (8) evaluated at ¥s ¥,

q = q(cushzf,_, - eoszq)%
d9 =z ds, /q
are made so that (63) becomes:

2 5 le%t{.'bl({o)}zl' il
[ 1 x fo

sidewall

Fastoring ocut q coshf, from the integrand and substituting € = ]/coahgo

in the integrand, equation (65) becomes

52 1 [, (5 )L q cosh i
flﬁzl = ﬁ['l;] e foﬂ(l

A further abbreviation is madet 13

X
IIp =/° (1-e2gw27)§[spl(7)]2 dn

mdthentﬁ”ainbegralofﬂa over the side wall is writtem:

2 2
f!H’l = 4B
sidewall

The integral of the square of ths ¢ componant of H over the
side wall is writtens:

2.2 2 1Y
(2 B kii&(‘g )} L faui__‘__ p deg,
f {Bgl° = > T 391(7ﬂ pge o8

& oy 5 cont,

43 Admittedly thsre is a plethora of integral abbreviation symbels,

Howsver, the final expression for Q wonld require three pages
5.1’ written without these sbbrewiations, so they muast be accepted
a3 ) pecessity rather then a confusing convenicnce,

T — R -

a(osh’f, > = cos27 )é[%:l( 7

- C2008? 7)%[85:1(71 & d9

e e e e

ot b e e Rt

Iy |




(70)

(72)

(72)

(73)

(7h)

(75)

e i SO P L

28

The substilutions from equations (63) and (6L) are made to gives

3212 [, (5012 L o 1 >
Js(j}f‘i\“:] Lo j(a ot 107" a9

2 q(cos‘h‘%‘o - cos?r; %

which becomes

#han 1/q cosh E’o is factored out of the integrand and the

32 k2 o (F ) 2 L
52 ) f"u _@2@327)'1‘[_351(7 Ik dn

29 cee:hi'o

substitution € = 1/cosh ¥, is made in the integrand.
The further integral sbbrevistion is madss

v (2T a2 2 2
I'p =j0 (1 - @%cos 7) [Spl(r/')J d7
Then the integral of Hq can be written:
2 » 12
f\m,l? . Zuln Gl v
aidewall 2q oosh'io

Substituting from equations (68) and (73) imto the expressisn
for average power loss, equation (58), the expression for average

powar loss in the side wall is obtained:

2 v ;
PL_ = R -};———I'—{-!pl(ioﬂz [1% q coshf TUlp +"ﬁ'2_sﬁ°i:' va)

This may be put in a somewhat more cervenlent form: 5

BzL kg 2 k2! (kB ]
Plow 2 R T, q coshf Ppl(%)] Lq coshf ) = q— w

frymes
Lo, SRR s

S——— "
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it
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It is seen from equation (23) that the z component of
. H is zero at the end walls where 2 = 0 or 5 T, lhen

equations (24) and (25) are evaluated at either of the end walls

‘ the square of the current in one wall is:

NI A < i A DAL LAl M99 M, o 2 e

2 .2
- (2 Bk ¢ a 12 2
(76) Ed® = —2 o ()" [ (8))] ._
94 Pl
\Bo\® = -=-2-—-ng§ s, (1) G, (2}’ |
17 = ql [ ' 174 o) 1 3

- When the substitutions dsl z 9,

made, the integral equations become:

dianddsz:qldy are

. | 2 fo (2, s
= ) gt 82k§£ f[asl(o;)_] |Py ()" dqar

omr
(18} f lHle = 8 k':fofofo [31;1(7 ) {Jpl(i)]z dndf

The integral abbreviations stated in equations (53), (5L),

|

{ (55), and (56) are useds The fact that there are +wo end walls

k provides a two which cancels the factor of one-half in equatien (58)
7

80 that the total power loss in the end walls becomes:

i - 2 [] 1}
(79) PL_ = B k§ R (I + IpIlp)

e o S A
UL r R = s 4o . M e, AN A P 0 AT AT, TN AN L PO ST o=
~ oo e S By P " 3 s (i "
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(s0)

(81)

) =
TP e e = e e T g = - - ——— ) . : T g
P ! .
ot S R i T s
Tt e T e e A iy as g R "’i‘s

30

Bquations (57), (74); and (79) provide the information
required to substitute in the equation:

wat b
Aversge Power loss

The angular frequency,w, can be expressed in terms of k by using
the relation:

i X

2
/\\‘,MG B \’/«G

Wi

from equation (33).
This gives the formmla for Qs

LY A ,
Q‘mh (IpIlp + Ipllp)

R

-y

It will be convenient to consider QS§/»  instead of Q. The
relation used will bet

“Q:—\{-Z-::b then Q &/n = ar ¥

Also the substitutions are made from eqations (36), (42), end (3U4):

<

p =TT/2
/2 = Pﬂ3
o/ = r/k

U Thig will male dirsct camparison with published curves fuor Q
for the circular case possible.

45 Ramo and Whinnery, Pislds and Waves in iodarn Radie, Wiley, 19ll, p 211

L 2] () O (X, =t
: E‘%’q ot %) T {@ B’é]+ i (oIip + k) f§
A |

B 3 W e ek gk it i [
R rovemrpmn . = e oW RN~ ¢4 L ||
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31
1 3 (pmp »IIp)
@) @ 8/x = = > S
;—-{?Pl(f'og z(rzmp +(§2\ IVP;) + - (IPIII" + II"IIP)
< w A -4 ?

(83)

(84)

; (85)

(86)

Another integral abbreviation is madet
W =z pIb + Bl

Fram equations (33) and (LlL):

1 ¥
k = 2T/ = %[(sz2+E)—\c/—5]

and from the equations on the preceding page and the relation R = D/L

k3 8 23123
- g 3
i)

and, finally, using equatiens (3h) and (33)

kl s re/q =« r E(C)/s = > "o

When the substitutions from equatiens (83), {(84), (85), and (86) are
made in equation (82), and the mmerator and denominator are

simplifisd, the equation for Q &/ used for making caleulations
is obtained,




32
3/2
L (e
(87) Q34 = T T |9y (7)] 2 L (pRAe/8) TV + 2{rc/8)” wp p %
!'2 O [‘-b (l'i!!' IIIp

A demonstration that equation (87) reduces to the farmmla

for the circular case at sero eocentrioity will be postponed until
after the evalnation of the integrals is discussed in Chapter VI,




CHAPTER VI
CAICULATION OF THE WALITY FACT(R, Q

(1) Determination of the roots gnd quantities which Lollow directly.

The first step in the calculation of the quality factar, Q,
ie the determination of the roots of the boundary condition
eqatian (22) for the values of ¢ which are used, It develops
that for amall values of eccentricity (between sero and 0,5) that
the valus of the parameter ¢ varios between <ero and one in this
mods, The new and more accurate Tables Relating to Lathigu Funotions U6

cammot be used because the only values of coefficients falling in

the desired range are for values of ¢ of szero, 0,707, and 1.0.1‘7

The Elliptic and Spheroidal Wave Functions 18 provide the

coeffisients faoar values of ¢ at intervals of 0.2 accurate ‘to five
significant figures.

Cambi's Kleven Place Tables of Bessel Runctions 17
ware used to evaluate the Bessel functions, The coefficients for
thoh'athieumnctionammbeyondnsforﬂmrangeofc
congidered in both of the series (15) and (16) so that Bessel
functions of the first, third, and fifth order were ths only
ones required, It is desirable to determine the root values to

five significant figures, but the arguments for Bessel functions 50

it. pages 58 and 155
of 8 of sero, 0,5, and 1. Refer to table on page 12
it

L9 Cambi, Fleven and Fifteen~Place Tables of 3essel Punctions, Dover, 1948
50 Ee i, ’ ’

The same inmterval 15 used In Jahnke and Bmde, rableg O ions,
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(35)

(16)

N

Yirroa

3k

are given in Cambi to ircrementa of 0.0l in the nsighborhood

of the rootse To detexrming the roots, auxilary tables were
made using linear imterpelation for Bessel functions of the
first, third, and fifth ordars in incrememts of 0,001 from 1,80
t0 2,10, This gave values of the needed Bessel funotions for
three hundred values of the argument in the desired rangsa

The roots of the radiel functions are given to an seccurasy
of 0,01 in Ta.ng.sl For the sven mode, using the roots of Tang
as a starting place, values of the radial function,

Joy(c cosh®) = V772 éo (<1)% Dagy gzm (¢ coshY)

ware plotted against ¢ cosh ¥ and a maximum was fcund graphieally,
This maximm occurs at the root, r, (which is equal to ¢ cosh io).
When the root is found for a given walue of o, then cosh €, and ¥

can be detarmined, and the eccemtrioity is the reciproesl of cosh¥ o°

For the odd mode the rocts mmst be determinsd sanmewhat
differently since the term tanh § sppears in the formula for the
radial function,

Jol(c cosh}) = “T"/Z tanh¥ E (~l)k(2k)mzk‘1§l2k*l (¢ cosh})

This function was plotted against values of 7 and the maximm determined,

The WPA Tables of Circular and Hyparbolic Sinss and Cosines > was

51 loc. cit. page U3
52 pables of Gircular and Hyperbolis Sines and Cosines, Work Projects
IETn stration, New Yark, 1940
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usad to evaluate ¥, Steps of the argument are 0.0001 so
i that no interpolation was required. When F_ is determined,
the eocentricity and the root, r, can be determined by a process

which is the reverse of that used for the even mods,

K.i.nlcrsmcl'm.‘l.uon53 give root values for the even mode
to five significant figures, Thay make no comment on the
probable error in these figures; this wonld lead to the assumption

that a mare accurate interpolation formila was used than a linear
one. The even roots obtained by this suthor by the method outlined
above agree with the Kinser and ¥Wilson values within one ten-thousandth,

Astusl salculations were made using tho Kingar and Wilson values.
Kinger and Wilson did not determing valuss for the odd mode of

the TX . node. Accarding to Scarberough = these root valuss
dbtained using linear interpolation should be considered as subject
0 @ possible error of two ten-thousandths, It will be secn later >0
that the <rror present in the root value dominates all the other
«rrors presamnt in the values for Q,

il L i

The valuss of the oamplste elliptic integral from eqation
(13) are tabulated in Peirce *° with arc sin © as the argument.
Linsar interpolation was used to find the value of E (€) with a
possibles errar of 0,00005,

L

2 3

53 lec. oit. page h28

% Scarbereugh, Mmerical Analymis, LeGraw-ii1t
%5 Chmper VI
56 loc, cit. page 121
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(88)

(89)

(50)

Next the parameter \,/s was detarmined using the formula

derived from equation (45)

/2
e = rE(€) "

A1l of the roots and the quantities which are fowid directly
from the roots are tabulated at the end of this chapter,

(2) Ewvaluation of the integrals

2
1) Bvaluation of Ip = jo [a;(’,)]2 dv
From equation (13):
Sol(c,ooaq) Z De coa[(Zlul)')]
This expression can be smiared and integrated term by term, Becauss

of the orthogonality of the trigonometric functions, cross products
will give 2 ro over the full range and,

2T
f coa mx dx f a:lnud: s 5T
(o}

so that the value of the integral will be the sum of the sqares
of the coefficients. That is
1,2 1,2 1,2 o o
= [oa)? - o) - (0e)? - ]

The D‘r are tabulated in Stratton, lorse, Clu, and Hutner, 58

ST B. G. Peircs, & Short Zable of Lutecrale, formula L89
58 loc, cit. page 78
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6.4 cetie

(91)

(92)

(93)

It should be noted that for caiculations in which it
is possible to use the Tables Relating to lathieu Functions,

this value can be found directly from the tables tabulated as
N = T/a%,
r ° /&

The integral far the odd function differs only in the
trigonometric function involved and the mmerical value of
the coeffiolents, The Do, are tabulated in Stratton * on
page 82,

I, =™ [(DO.]L')?' + (Do%)z * (1):%)2 +° .]

These integrals are also evaluated directly in the Tables Relating

to Mathieu Functions for valuss of c as N = /8%,

m
14) Bvaiustion of Ip -Lz (951(7)J2 dq

The expression in equation (13) can be differontiated term by

tarm to give:
’ oo

S;I(c cosq) = é -Dojz"ku_ (2kx41) ain{(zb-l)'ll

for the even mode, and for the odd mode:
o0

8e, (o cosy) = hZO Doy, (21) cos((Zked)q]

The De_ in equatian (92) and the Do, in equation (93) are the
same coeffiscients as those in equations (90) and (91) respectively,
The values of the inmtegrals ure tharefare:

% 10c. cit. as 7). See table on page 12
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(95)

(15)

(96)

38

5.
"

m[(0ed)? + (0ed)? & (02 + + ¢ <]

[ (0o])? ¢ (3003) ¢ (SD3)2 ¢ © J

5.
1"

141) Bvalustion of IIp = /o{° [%, (o coshff af

From squation (15)

{

JO:.(O CCShE) g V;r/_z g (-l)k mﬂ!‘-lgakn (° °°ahi)

For a given o, the interval to the correspondingfowas

divided into 2|, parts, and valuss for Jel(c coshi) were calculated
far each of these points, Each of the values was squared and
these values were integrated mmerically using Sirpson's one-third

J6].

- h oceo
DTERAL = 37, + LGy 4754 204750 R, 47, 0097,,) 47y,

where h i1s the differance botween successive abscissas (that is

Eo/zh in this particular case) and the y's are the ardinates, The
cambination of the errar in the coefficients and the Bessel funciions
was calculated to be 0,00005, The inherent error in Simpson's formmla
far integration is given ass

(8 - 0) (§o} v
By = =5 (21‘) 'S (%)

where fiv is the fourth derivative of the function and ray be

5l e Scarborough, !Mamerical Analysis, page 176
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aprraoxinated by the fourth differences. The fourth differences
| ' are of the order of 0.00002 s¢ that the inherent error is clearly-

nagligible with the coefficients used,

Kinger and Y:t‘:i.lsc~n62 used Weddle's formula for intagraiion.
The inherent error is considerably less than the error with Simpson's

formula when the integrated function has sixth derivatives that

Pty

are a great deal less than the fourth differences. Since the value

of the coefficients are accurate to only five significant figures,

~  the additional difficulty in using Weddle's rule seems unjustified,

o s e A1 e b4 o . A A N A 5t - b 50

The estimated error in these integrals is twrice the sum of

the product of the root and the error 'in determination of the

Eet 2 functions, and the product of the average of the function value and
? the error in finding the root. This error was calculated as 0.0008.

The integral IIo is calculated in exactly the same mamner as a
ITs, using equation (16)
g T { £ /o g 2_.3 (-1Y5¢ 1 )
i (16) Jo (e coghf) = V¥2 +tanh (=1) ‘21:)1)921{ ol 2k+1(° cosht) :
3 k=0 ; ! .
t "
g iv) BEBvaluation of II;; = [ ° [_Jpl (f?] df
S 4]

|
i £ .
| The expressions (15) and (16) are differentiated and
1; evalusted st each of the 25 poimts which were found in iii). The

functions are sguared and the same integral formula is used to perform

the integrations The error ciloulated was 0,0005 which is larger than
the salculated error for the integrals IIp bscauss of the error in

g!1.04;.. cit. page 430
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(98)

(99)

(101)

finding the derivative,
) . 2 \3
v) Bvaluation of ITIp = (1 @2con 7) [&( 7)] dq

The term (1_820“27)§ may be expanded by a binomial

expansion to give
[1 - (1/2)Q2c082') (1/8)ch L - o o ']

All but the first two terms of the expansion are neglected and
substituting from equation (13)

ot
IIIe :[o (1 - 3Pe0e?7) [Be(7)]% d 7

If the trigomometric substitution
c0327 = M1 4 cos 29
is made, then

IITe

S B - 1% oo 28] (set1)}2 4

"IIle

The integral expressed by equat 'on (100) is evaluated in

liclachlan, =

Lo

1 - 4 fo a7 0% - 38 [ [5o(7 12 ooe

27 d7

oo
IIle = (1-3&)W - E 2 i}(mi)z + éo(nnlz'kd)(na%ka))

63 loc, ©it. page 79
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A relation for the odd mode is obtained in the same marmer

as far the even mode:

21 5 /2T .
(102) o = (1- f 2 4o -3¢ So(9) 2, d
(iez)oLSO('})]? /0[7]““77
The integral (102) is also evaluated by YcLachlan &
o0
) me s oo - TR0 ¢ £ odpwhy
2T
vi) Bvaluation of IVp = jo (1 -6200527)_} [8;;(7 )]2 d7
As in v), a binomial expansion is used which in this case
glives:
(104) 1 ¢ %ézoolzy + %e" ooe27 - ¢ o
Yloglecting all but the first two terms of the binomial expansion,
2w 2
(205) Ve = /o (1 ¢ 2¢%) [8C9)]° ag +/o 3ccos 2758(72]247
which is evaluated by liclachlan as
-
' 2 g2 1,2 ) RN |
(206) e = (1+¢3)ue Mie [—é(nsl) + é n.zmna&”(ml)(zw)
Sixilarly for the odd case,
(107) o w (14300 4 W& [}(m{)z + éo Doj, 1005, 5 (A1) (2k#3)
= loc, cit, page 79
T SRS PURRRBALE - | Wbdinniasinits si it I BT = 3
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(108)

(109)

(3) The degenerate sllipse

When the eccentricity of the ellipse is sero, the constamt
¢ i8 also sero. All of the coeffisients are sero except the firsi
one so that the angular functions reduce to trigonometric functions
and the radial functions reduse to first order Bessel functions.
Refereme to equations (90), (91), (i), and (95) shows that the
integrals Te, o, Is, and Io all will have the value T at sero
eccentricity, Further, consideration of equations (99), (102), (05),
and (107) shows that IXTe, IIIo, IVe, and IVo bave the value at
sero eccantricity,

Substituting from equation (83)

W = T(Ip + Ip)

a.nd(II;; ¢ IIp) is, in the derenerate case:

f:"[gpl(tﬂz + [9»1(5)}2 af |

Equation (108) is a special farm of a Lommel integral and mxy

be evaluated directly to give: 65

w e ¥ rle)? [1-ae?)

The values for tho imbegrals are substituted into equation (87)
and the substitution for the circular case from equation (45)

that
r = 1/)‘,/'

EAN. W, liclachlan, Bessel Functions for B;Lnnu, axford, 194k,
page
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is made to get:

3/2
0) o Lo 2 L B e G-y

Trr2+P—5 23-0-9233

7

2 (1 - 1/r?)
2T 7 P 4 (1-8) GREZ

s 1 (p232+r
(111) . e Sotre =

The equation (111) agrees with the formula given by
Hontgamery for the circular cavityintho'm]n nodo.66




TABLE I

i The Root Values and The Associsted Quantities for the Bven lode

e o
r L842
c 0.0
A8 054312}
IIle 3.159
IVé  3.14159
. Is  3,14159
Is 3,159
; Ie  c.LlsBy
Ils  0y19L43

002

L8115
0.20860
00 SULLiSk
3.12758
3.6
3.14976
3.14979
0.45821
0017233
0453331

0,205813
04215978

9461996

Ock

L8830
0,21704
00549164
3.0861
301593)
3.17320
3.17383
0.48853
0.13689
0.53819

0420638,
002211271
9.616895

0.6

L8452
0032516
0,557018
3.01715
3.17923
3.21404
3.21737
0051456
0010291
04 5u616

00207941
06236928
9455305

0.8 1.0

L848Lk  1.8527
0.43280 0453975
0.568021 0.585972
2,92922  2,74550
3.20025 3,23751
3.27u36  3,35585
3.28523  3,38372
0454168  0,47966
0.,06L51  0,03499
0.55780  0,56722

04209873 0,19201;2
04254519 04291053
9.,118998  9,06385
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TABLE I \

The Root Valnes and The Associated Quantiiies for the 'I'Em linde

c 0 0,2 Ot 0.6 0.8 L0 1,2

r L812 L8751  1,9082 1,950 - 2.0075 20751  2,1681 I*
, S 0,0 061063 042113 043064  0.4000 0489 045531 *
| Ao 0312 0.5UTT  0,53006 0.52399 0.5200L 051355  OuliohgT |
: Lo 3.14159 3,13723 3.12482 3,10826 3,089% 3,07606 3,07210 ;
o  3.U159 3.15485 3,19h03 3.25186 3.32977 341290 3..9823 :
: Io 34159 3.16550 3.23791 3.36122 3,532k 3.79099 L1913 :
: Io  2.15159  3,15552  3.2385% 3.36455 3,581  3.81876  L.17998 [

o 0.Lih689 0uU3561 0.3961h 0.36458 0.31817 0,27810 0,2h357

Io  0.I9Lh3 0,21650 0.,235% 0.29106 0,32391 0.36353 0.L152h

| [ord? 0.53102 0.5287% 0,52351 C.S1378  0.L9973  O.LBOLS  O.LS900

coef Q 0420455 0,203011 0,208682 0,218826 0,234021 0,253380 0,284492
coef RZ  0,214702 0,20181l 0,294606 0,185251 0,1768433 0.167672 0,153956
coef B©  9.,64278 0430000 0,481811 0.50107h 0.,510163 00532039 0534851
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TABIR III

Table of Values of the Quality Factor, Q 6‘/,\, for the mnl Hodes

Even kode
\\c 0s0 0e2 Oels 06 0.8 1,0
R
. Q0 020456 0.20581 0,20638 0420798 0.20987 0.,19204
0.5 023529 023670 Ce23752 0423954 002L210 0.22322
1.0 0426968  0,2707h  0.27100 0427191 025509 0425509
1.5 0627402 0627453  0027LI1 027365 0,25879 04258379
2.0 0620671t  0o26736 0426673 0426591 0.25232 0425382
2.5 0626009 0026010 0425958 0425863 0.24905 024905
0dd Mode
N 00 0.2 Oek 0.6 0e8 1.0 1.2
0.0 o;2m56 00203011 0,208682 06218826 0234021 0253380 0284482
0,5 0623529 06235981 04239178 0249231 04266107 04286589 06317875
1.0 026968 00269917 C.2TURTE 0,28L091 0.298339 06316165 06342376
1.5 0627U02 04274031 027890 04286029 0.29639L 0,30890°0 0.327308
2,0 002671y 04267602 00271507 0.,276831 04283785 0.292366 0,30498Y
2.5 0026009 00261693 0o2637T27 0426T84L 06272715 06278940 04287949
48
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CHAPTER VII

DITERPRETATION OF TIEE CURVES FOR THE QUALITY FACTGE

| (1) Analysis of the error in the calculations.

The curves far the quality factor are plotted in Figures 5 and
6« The extremely small changes in the quality factor, Q, at small
‘ values of eccantricity make a careful consideration of the accuracy range
necessary. The linits of accuracy in the determination of the roots

and evaluation of the integrals was noted when these evaluations were

‘ discussed in Chapter VI, It is now desirable to see hcw these eomponent
errors are reflscted in the final result,

| . The error caloculations are simple and irtermediate steos
‘ are amitted, All quotients are changed to product form by expressing
the denominator with a negative exponent, All quantities to
fractional exponents are put into the form (a « e)m’n and
then expanded by a binomial expansion to two terms. All mmbers are

rounxded to two significant figures.

value was assumed to be 0,00005, This may also be considered as the
error sppearing in N,/s. It develops that this error is the daminating
5 one, It is therefore designated by the symbol e' while all the other
E arrors are denoted by miltiples of e where e a‘.so signifies an error
]

) of 0,00005,

}

F

f

F The error in the detesmination of the derivative root
N
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To determirs the errar ;Lnlgz

3/2
X3 ;‘:[1 + ( s+ e')? p2R2]
T2LR2(1 ¢ L3e?) 67
The error in evaluation of the integrals I and II was sssumed

to be 0,00005, and ths errar in the evaluation of the integrals I'
and II' was considered as 0,0005, The first of these errors is

designated by e and the second by 10 e. The errar in the evaluation

of ¥V oan be written as:

Ve I ¢ I'I
= (I+6)(Il+108) 4 (I'4108)(II +e)
~ III' ¢+ I' II + Gbe

The error in ths calculstion of the integral III was assumed
to be 0,00005 so thats

2 ¢ 6be
346

Vo1 =

= 2/3 ¢ 28e

The error in the coefficient of Q, which is independent of R, can

than be written:

v
3r II J(r) j<
2/3 ¢+ 28e
3(24 05 40)

ocoef Q

n

X 2/9 4+ Jdet ¢ 9%k e

Wmmfwmmemgmuom.wmm

for this reason thay are not mmbered

——




b o

Similarly it was found that for the RS coefficient:

coefsz-::. 5 ¢ Get 4 3e

and for the R° coefficient:

coef R3 T 5 ¢+ 17e + 13e!
ForR=mal
Q8 = 3 4+ 15.1e8' + 19e
= o3 = L0017 (for both e' and e taken as
0,00005)
QEA T3 + 6e' 4 6436
2 3 & . 0007 (for both e! and e taken as

0,00005)

It is noted that the error in the determination of the root
introdices about the same error in the final result as the sum of
all the other errors in the determinaticns of the integrals. If a
mor'e conservative estimate of the error in the determination of
the root is made e of, say, 0,0002; the estimated error in the

determination of Q &8/ becomes 0,00k

(2) _Thewatiidey owpenent swrves

When a problem is arranged for maximmm facility in mmerical
camputation, the sigrificant componsnts msy be mixed so that it

5% 3ea page 3k
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necomes difficult to see the relaticns of the individunal changes

that cambine to cause the overall result. Inspection of the

cuwrves for Q in figures 5 and 6 shows that the quality factor

varies very slightly for vaiues of eccentricity 1ess than O.k, but

a cursory exmiination of ‘the data in Tables I, II, and III shows that
these slight changes have not besn the result of small changes in the

than the resulting change in the quality facter, Q.

To examine them qualitatively, the individual variations in
the staored enargy, the power loss in the end walls, and the power loss
in tho sidewall are plotted in Figure 7 to slide rule accuracy. The
characteristics depend on the ratio of the average diameter to the
length so that it is necessary to choose a fixed value of R; the
convenient value of R m 1 is chosen, The cwrves in Figure 7 are
based on unit magnitude at zero eccentricity,and they provide no
infarmation cc;ncernixg the relative magnitude of the changes which

occur',

Ths volume of the cavity is directly proportional to the
product of the major and minor axes. For a given perineter, the i
cross section area is a maximm st wero eocentrisity, ar’ i muy seem
odd that the stored ensrgy increases when the volume is uscreased,

At gmall values of eccentricity, the volume decreases very little as

the circle i= deformed; 'a plot of ths volume on a per unit hasis is

oomponents, but, rather, of campensating changes of much larger magnitudss p

LW T, s T il —— —2 e |
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. included in Figure 7 for comparison with the change in the stored

energy. The increass in stored energy can be attributed to the
change in resonant wavelength, and, perhsps, a slightly nore efficient
distribution of the fields in the cavity with the change in eccentricity.
Although this change in distribution would be difficult to demonstrate

; mathematically, it aeems to have some intuitive justifications The
Mathisu function at small eccentricities approximates a slightly
distorted Bessel function, The lack of symetry of the dominating

first order Bessel function in the range from smero to the first
derivative root makes it seen possible that a slightly non-symetric

eylinder might use such a function more efficiently t¢han the perfect

cylinder could,

At an sccemtricity of 0.5 in the odd mode, it is ncted that
the stored enargy is still increasing. Certainly this increase could
pot contima indsfinitely and must change to a decrease when the
§ = volume begins t& decrease rapidly.

(3) Discussion of Results and Conclusions

The rumerical values of Q&/\ for zaro eccentricity agres

‘% Sollilby R S 1 e O 5 B i i S bl G A Lo sl v o e MO e B IS B'E ,

munerically with those plotted by outgomery for the circular

oylindrical cavity. 63 E

mlpbtoftheqnﬂityfactwiﬁFignreSfartheodﬁmodeahm

that the quality factor may decreasc in value slightly for very small

——
- 2o el

wmm?» E, G. ed., Technigue of Microwsve Mgasurementd, LIT
Radlation Laborstory Seriss, 1947, page 301

o kO s S S




‘ i
L o R ol

55

amounts of eccentricity, This decrease is of the same order as
the possibls error in calculations and should not be given undue
consideration, It secms reessonable to conclude that the quality
factor remains constant for values of eccemtricity less than 0,25
for excitation in either the even or odd modse

Ordinarily, a deformed circular cylinder will be excited
at the same time in both the odd and even modes, If the axcitation
orlemtation can be gemtrolled relative to the deformation, it
will be preferable to excite the.mn mode, since both the wavelength
and qualily factor change less in that mode,

It is unfortunate that other modes could not be evaluated by
an approximate means; moet of the individual quantities involwved
in the expression for the quality facter were calculated by Tang 'O
but saleulations made using his values have a possible error range that
is lerger than the magnitude of the change in Q, Calculations would

be simplifisd a 1ittle for modesd for which the newer Tables Relating to

Mgthien Functions could be used sinee some of the integrals are

evaluated directly in those tebles,

w loe. cit.
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